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Abstract

A unified differential geometric framework for estima-
tion of local surface shape and orientation from pro-
jective texture distortion is proposed, based on a dif-
ferential version of the texture stationarity assump-
tion introduced by Malik and Rosenholtz. This frame-
work allows the information content of the gradient
of any texture descriptor defined in a local coordinate
frame to be characterized in a very compact form. The
analysis encompasses both full affine texture descrip-
tors and the classical “texture gradients”. For estima-
tion of local surface orientation and curvature from
uncertain observations of affine texture distortion, the
proposed framework allows the dimensionality of the
search space to be reduced from five to one.

1 Introduction

Shape-from-tezture is the problem of determining the
shape and orientation of a three-dimensional surface
from a static monocular image of it. Qualitative and
quantitative analysis of this problem originated with
the work of Gibson (1950), who introduced the concept
of a texture gradient, i.e. the systematic change due to
the combined effects of imaging and surface geometry
in the size and shape of projected texture elements.
In computer vision, the pioneering work of Bajcsy
and Lieberman (1976) largely follows Gibson’s texture
gradient paradigm. In later work, however, the ap-
proach has often been a different one; see e.g. (Witkin,
1981; Blostein and Ahuja, 1989; Blake and Marinos,
1990a, 1990b; Garding, 1993). Here the problem is for-
mulated in terms of estimating the parameters of a
global or regional surface model (typically a plane of
unknown orientation). With the addition of a proba-
bilistic texture model, this allows shape-from-texture
to be treated as a statistical inference problem. Many
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elegant computational techniques have been proposed,
but they generally suffer from rather restrictive as-
sumptions about the surface texture (e.g. isotropy)
and/or the surface shape (e.g. planarity).

The texture gradient approach is free of these lim-
itations, and allows the shape-from-texture problem
to be formulated in terms of local estimation of sur-
face orientation (two parameters) and surface curva-
ture (three parameters). It is useful to decompose this
problem into two relatively independent components;
first, the problem of estimating projective texture dis-
tortion (the “texture gradients”) in an image, and sec-
ond, the problem of interpreting the projective texture
distortion in terms of surface orientation and shape.
This purely geometric problem was addressed for pla-
nar surfaces in (Stevens, 1981), and for curved surfaces
in (Garding, 1992).

A natural way of formalizing the notion of a tex-
ture gradient is to consider simple distortion gradients,
1.e., the normalized gradients of scalar-valued functions
representing area or characteristic dimensions of pro-
jected texture elements. However, an inherent limita-
tion of the simple distortion gradients is that they do
not contain enough information to estimate the full
surface curvature (Garding, 1992). Malik and Rosen-
holtz (1994a, 1994b) therefore proposed to represent
texture distortion in a more general way by the set of
affine transformations that best map an image texture
patch onto neighbouring patches. Each simple distor-
tion gradient encodes some particular aspect of these
transformations; for example, the area gradient corre-
sponds to the gradient of the determinant of the lin-
ear part. The main advantage of using the full affine
transformation is that it allows (in principle) complete
recovery of both local surface orientation and surface
curvature, at the cost of having to establish a more
precise description of the local texture distortion.

In order to estimate the affine texture distortion
in the image, Malik and Rosenholtz introduced the as-
sumption of texture stationarity, which means that the
surface texture elements can have arbitrary properties



and shapes as long as they are all (locally and sta-
tistically) equivalent. This is a reasonable assumption
which is significantly less restrictive than e.g. isotropy,
and 1t is sufficiently precise to allow a strict mathemat-
ical analysis of its implications. The main purpose of
the present paper is to derive a unified differential geo-
metric framework for analysis of estimation of surface
orientation and curvature from the gradient of (nearly)
arbitrary texture descriptors, based on a strictly differ-
ential version of the stationarity assumption proposed
by Malik and Rosenholtz (1994a, 1994b). By applying
this framework to the problem of estimating the local
surface parameters from noisy observations of texture
distortion, it is shown that the dimensionality of the
search space can be reduced from five to one.

2 Review of the geometric framework

In this section the basic differential geometric frame-
work proposed in (Garding, 1992) and used e.g. in
(Malik and Rosenholtz, 1994a, 1994b; Lindeberg and
Garding, 1993; Garding and Lindeberg, 1995) will be
briefly reviewed. The notation and terminology follow
O’Neill (1966).

Consider the perspective mapping of a smooth sur-
face S onto a unit viewsphere X, as shown in Figure 1.
At any point p on X let (p,t,b) be a local orthonor-
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Figure 1: Local surface geometry and imaging model. The
tangent planes to the viewsphere % at p and to the surface
S at F(p) are seen edge-on but are indicated by the tangent
vectors t and T. The tangent vectors b and B are not
shown but are perpendicular to the plane of the drawing,
into the drawing.

mal coordinate system with p as view direction. The
tilt direction t is parallel to the direction of the gradi-
ent of the distance from the focal point, and b = p x t.
Denote by F : X — S the perspective backprojection,
and by F., : T,(X) — Tp(p)(S) the derivative (linear
approximation) of F' at any point p on X, where T,,(X)
is the tangent plane of ¥ at p, and Tp(,)(.5) is the tan-

gent plane of S at F(p). In Tp(,)(S), let T and B be
the normalized images of t and b respectively. In the
bases (t,b) and (T, B) the expression for Fl, is

F*p:<r/c(;)sa 2):<1/0m 1/0M)’ (1)

where r = ||F(p)|| is the distance along the visual
ray from the center of projection to the surface (mea-
sured in units of the focal length) and o is the slant of
the surface. The inverse eigenvalues of F.,, m < M,
describe how a unit circle in T(p)(.S) is transformed
when mapped to T,(X) by F*_pl; it becomes an ellipse
with m as minor axis (parallel to t) and M as major
axis (parallel to b).

When image data are given in a planar image Il
rather than on the viewsphere X, Fy, can nevertheless
be computed from the derivative A, = F,,G,y of the
composed mapping A = F o (5, since the derivative of
G :Il,q — X, p only depends on the intrinsic camera
geometry.

3 Local texture stationarity

The assumption of texture stationarity introduced by
Malik and Rosenholtz (1994a, 1994b) provides a sound
theoretical basis for analyzing all forms of shape-from-
texture estimation based on differential texture distor-
tion, using either full affine structure, texture gradients
or any other texture property which is systematically
affected by affine transformations. Intuitively, this as-
sumption means that the surface texture elements can
have arbitrary properties and shapes as long as there
1s no systematic geometric distortion among them.

We consider a texture element at some point P =
F(p) in the surface to belong to the tangent plane of
the surface at that point. In practice, this means that
the extent of the texture element must be small rela-
tive to the radius of curvature of the surface at P. This
local tangential texture model eliminates the theoreti-
cal difficulty involved in mapping a curved patch onto
another patch with different Gaussian curvature, and
is related in a natural way to the concept of differential
texture distortion (e.g. texture gradients).

To formalize this texture model, we introduce a lo-
cal orthonormal tangent frame field ('i‘, ]§) € Trp)(5),
which is stationary in some neighbourhood of P and
for convenience is chosen such that T = T and B = B
at P. Local texture stationarity can then be defined
in terms of the frame field: A texture is stationary in
some region if each texture patch has the same rep-
resentation (coordinates) with respect to ('i‘, ]§) As a
consequence, the relation between the projective dis-
tortion of any texture feature and the local surface



orientation and curvature only depends on the projec-
tive distortion of the basis vectors ('i‘, ]§), there is no
need to analyze each feature separately.

We must now define precisely what should be meant
by (local) stationarity of the frame field ('i‘, ]§) The
property that the “shape” does not change is repre-
sented by the fact that T and B are orthogonal and
have unit norm, so the only remaining issue is the ori-
entation of the frame field. Intuitively, the frame field
and thus the surface texture should remain parallel
to itself when it is translated from P to some neigh-
bouring point ). This condition is satisfied if the frame
field is moved by parallel transport along the geodesics
originating at P, i.e., using a geodesic polar parame-
terization with pole P (O’Neill, 1966). For a planar
surface this corresponds to the usual Euclidean notion
of parallelism.

However, for a general curved surface the idea of
a parallel texture field is, unfortunately, more prob-
lematic. For example, if a tangent vector v is parallel-
translated along some closed path I', the end result v’
will not necessarily be parallel to v. (In fact, the holon-
omy angle between v and v’ is equal to the total curva-
ture of the region enclosed by T'.) This inescapable fact
of differential geometry means that, strictly speaking,
the orientation of texture elements is a reliable feature
only for surfaces with zero Gaussian curvature.

Nevertheless, the definition of parallelism in a
neighbourhood of P based on a geodesic polar param-
eterization is perfectly valid; the problem 1s that for
a surface with non-zero Gaussian curvature the re-
sult depends on P. For lack of a better alternative,
however,; we shall in the following apply the definition
without restriction to zero Gaussian curvature, but the
difficulties mentioned above should be borne in mind.

In fact, since the analysis 1s a differential one, the
only practical consequence of the definition is that the
covariant derivatives Vv'i‘ and VUB have no compo-
nents in Tp(p)(.5), for any tangent vector v.

Finally, it 1s perhaps worth pointing out that the
concept of texture stationarity is applicable to both
geometric and statistical texture descriptors.

4 Differential texture distortion

Given the definition of local texture stationarity from
the previous section, the effects of projection on a tex-
ture descriptor is fully defined by the effects of projec-
tion on the basis frame field (T, B). Let (t,b) denote
the scaled images (E,f)) of the frame vectors ('i‘, ]§),
defined by the property

F7'B.
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(t, B) represent the texture that is observed in the im-
age. The constant scale factors 1/m, and 1/M, have
been chosen to make £ = t and b = b at p. Unlike
('i‘, ]§), the vector field (t, B) is in general neither per-
pendicular nor of unit length away from the reference
point; this distortion is what allows surface orientation
and curvature to be estimated. The relation between
the different vector fields that have been introduced is
schematically depicted in Figure 2.
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Figure 2: The frame fields (T, B), (T,]~3), (t,b) and the
vector field (£, b) shown at the reference point P = F(p)
and another point @@ = F(q).

4.1 The fundamental equations

The definition of local texture stationarity in terms of
the frame field ('i‘, B) allows a general analysis of a
wide class of texture descriptors. In order to express
the 1image gradient of a particular texture descriptor
in terms of surface curvature and orientation, one only
needs to know the rate of change (the covariant deriva-
tives) of the projected frame field (E,f)) These rela-
tions turn out to be simple and compact, and to em-
phasize their fundamental importance they are given
as a proposition:

Proposition 1 (Locally stationary texture field)
Let (T,ﬁ) be a locally stationary tangent frame field
in a smooth surface S, which at P = F(p) coin-
cides with (T,B). Let (t,b) be the images of ('i‘,]i)))
scaled by constant factors to have unit length at p,
ie., t = (1/mp)F7'T and b = (1/M,)F'B, where
my, = ||[FL'T(P)|| and M, = ||[FZ'B(P)||. The in-

trinstc covariant derivatives of (E,f)) at p are given by

Vit = —(2+4rk/coso)tanct, (2)
Vit=V:b = —rrtanct— tano b, (3)
Vib = —rrpsinct. (4)



A derivation can be found in (Garding, 1995). In the
following subsections Proposition 1 will be applied to
analyze the information content of two different types
of texture descriptors.

4.2 Full affine texture distortion
Malik and Rosenholtz (1994a, 1994b) estimated the

affine transformation between an image patch and a
number of nearby patches, and then used the parame-
ters of the transformation to compute the local surface
orientation and curvature. Starting from the differen-
tial framework described in Section 2, they derived
an expression for the affine transformation which also
involved some finite entities. A simpler relation is ob-
tained directly from Proposition 1:

Corollary 2 (Affine texture distortion) Let
(T,ﬁ) and (t,b) be defined as in Proposition 1. Let
w = w,t + wyb (where wy and wy are constants) be
the image of a locally stationary tangent vector field
in S, and let v = vt + vyb € T,(X) be an arbitrary
tangent vector at p. By definition, the first-order ap-
prozimation of w(p+ V) is

W(p + V) = W(P) + Vyw,

which can be expressed as an affine transformation A,
of w, parameterized by v,

w(p+v)=A, w= (I+M,) w,= (I+v: My+v, My) w,
where I is the identity, and

M, = —tano 24 rK/coso rr )
0 1
o= e (T )

in the (t,b) basis.
The proof is a trivial application of Proposition 1; see
(Garding, 1995) for details.

To aid the interpretation of M; and M;, Figure 3
shows schematically the geometric effects of the com-
ponents of a two-dimensional linear transformation.

Some examples of the local texture distortion pat-
terns that result from (5) and (6) are shown in Fig-
ure 4. The drawings were generated by applying A, to
the central texture element! (a cross) in eight neigh-
bouring positions, for various values of the surface cur-
vature parameters and for two different step lengths
(ve, ).

Corollary 2 reveals four invariant properties of the
differential affine distortion patterns:

1To simplify the visual interpretation of these examples, the
central texture element was chosen to be the orthographic pro-
jection of a cross. However, for the purposes of the analysis the
shape of the element is irrelevant, as long as it is non-degenerate.

Horizontal Horizontal
scaling shear
Vertical Vertical
shear scaling

Figure 3: The geometric effect of the components of a 2-D
linear transformation.

e M[1,2] = 0: There is no vertical shear in the t
direction.

e My[2,2] = 0: There is no vertical scaling in the
b direction. This observation is in keeping with
the suggestion by Stevens (1981) that the tilt di-
rection can be computed as the direction perpen-
dicular to the direction of least variability, and
the observation in (Garding, 1992) that the major
gradient vanishes in the b direction independently
of the surface curvature.

o My[1,2] = M,[1,1]
o Mi[2,2] = M[2,1]

The first two properties have a simple geometric mean-
ing which can easily be identified in Figure 4, whereas
the third and fourth properties constrain the transfor-
mation in a more implicit way.

Accuracy of the differential approximation.
The affine distortion map given by Corollary 2 can
be interpreted as an approximation in two steps of the
perspective projection of a locally stationary surface
texture. First, the projective distortion in a small re-
gion is approximated by affine distortion; second, the
change of this affine distortion in a neighbourhood is
approximated by an affine function of image position.
The accuracy of this approximation will in general de-
pend on the precise surface shape, but it is neverthe-
less instructive to see what happens in the case of a
very simple shape such as a plane. Figure 5 shows the
image texture pattern generated according to Corol-
lary 2 superimposed on a true perspective projection
of the same surface pattern. The differences are almost
impossible to see, so at least in this case the approxi-
mation errors are clearly not a cause for concern.

4.3 Texture gradients

Proposition 1 contains in a compact form all the
information necessary to determine the information
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Figure 4: Examples of the effect of M; and M; at a planar point, a convex cylindrical point, a concave spherical point,
and a saddle point. The surface orientation is o = 50°, § = 90° in all cases, which means that t points towards the top
and b towards the left. The distance between the central texture element and its nearest neighbours is 0.03 focal units
(corresponding to a visual angle of 1.7°) in the top row, and 0.15 (visual angle 8.5°) in the bottom row. The curvature

parameters have been scaled accordingly to preserve the magnitude of their effects.

content of the classical “texture gradients” (Gibson,
1950; Stevens, 1981; Garding, 1992), such as the minor
and major gradients (sometimes referred to as com-
pression and perspective gradients, respectively) or the
area gradient.

As an example, let us derive an explicit expression
for the minor gradient, which is the normalized gradi-
ent of a projected length m = k||t|| in the tilt direction
(where k is an arbitrary scale factor). The normalized
directional derivative at the point p in some direction
v can be expressed as

vim] _ v [kI[&l] . [\/ﬁ] —{.v,i
m = A -

where we have used the fact that |[t]| = 1 at p. Hence,
in the (t,b) basis

vm t-V,t 24 rig/ coso
— = = ~ | =—tanco ,
m t- Vit rT
which agrees with the expression derived in (Garding,
1992). Other texture gradients are computed analo-

gously; for example, the normalized area gradient is
given by the gradient of ||t x b]|.

5 Shape-from-texture estimation

Up to this point the analysis has mainly concerned
the “forward” case, i.e., characterization of various dif-
ferential texture distortion measures in terms of sur-
face orientation and curvature. The practical prob-
lem, however, is usually the inverse one: to estimate
surface orientation and curvature from a number of
observed local texture properties. Malik and Rosen-
holtz (1994a, 1994b) treated this problem for the
case in which full affine descriptors can be computed
(e.g. from spectrogram properties). Here it will be
shown that this estimation problem can be simplified
considerably, and at the same time generalized to in-
corporate an arbitrary covariance matrix for the mea-
surement errors.

In theory, the affine distortion in two different di-
rections uniquely determine the affine distortion in any
direction, due to the linearity of covariant derivatives
(see Corollary 2). In practice, however, estimates will
be corrupted by noise, and it is therefore desirable
to use measurements of the affine distortion in sev-
eral directions. As pointed out by Malik and Rosen-
holtz (1994a, 1994b), a natural and theoretically well-
founded estimation criterion is then to find the values



Figure 5: The affine approximation of projective distor-
tion, superimposed on the corresponding true perspective
image. The affine approximation image is copied from Fig-
ure 4 (bottom left). The images show identical and par-
allel crosses in a planar surface. The surface positions of
the crosses are arbitrarily chosen by backprojecting a reg-
ular 3 x 3 grid of image positions. The approximation er-
rors (minute deviations of the vertical axes of some of the
crosses) are almost impossible to see.

of (o, rky, vk, r7, ) that minimize the sum of squared
corrections to the measurements. Malik and Rosen-
holtz solved this five-dimensional minimization prob-
lem by a gradient descent technique. This problem is
not intractable if a reasonably good starting approx-
imation is available, but 1t is clearly computationally
expensive. Starting from Corollary 2, a more direct
method will be derived below.

5.1 The general case
To simplify the notation, we rewrite (5) and (6) as

_(a B (B
Mt_<0 7)’ Mb_('y 0)'

To avoid dependence on the specific method used
to estimate affine distortion, it is useful to (like Malik
and Rosenholtz) consider an estimated affine distor-
tion M = v, My + vy My in some direction (v, vp) to be
the basic observation. Without loss of generality, let
the step be of unit length, 1.e.,

vy = cos(¢ — 0), vy = sin(¢ — 6),

where ¢ is the angle between the direction in which M
is measured and an arbitrary (#,y) coordinate frame,
in which the (unknown) tilt direction is f. M (¢) cannot
be expressed in the (t,b) basis since the orientation ¢
of this frame is not yet known. By expressing it in the
(z,y) frame instead, we obtain

M(¢) = Rg (M cos(¢ — 0) + Mysin(¢ — 0)) RE, (7)

where
cos@ —sinf
Re_(sinb’ cos@)'

This can be rewritten as

M(¢) = My cos ¢+ My sin ¢, (8)
where
M, = Rg(Mtcosﬁ—Mbsinﬁ)ReT,
M, = Rg(Mtsinﬁ—l—MbcosH)ReT.

Assuming that measurements have been made in n dif-
ferent directions {¢;}7_,, let m be a vector containing
all the estimated transform components,

m = where m; = M(o3)[2, 1]
' ’ ' M(¢2)[1a 2]
Hn M(:)[2,2]

Analogously, let m(«, 5,7, 6,6) be the predicted com-
ponents. The estimation problem can now be formu-
lated as finding the parameter vector x = (o, 3,7, 6, 0)
that minimizes the weighted corrections to the mea-
surements, 1.e.,

(1ia(x) — m)" C7' (1ha(x) — m),

where (' 1s the covariance matrix of the measurement
errors.

The key observation that simplifies this problem
considerably is that the prediction m(x) is linear in
the first four parameters x4 = (o, 5,7, 6) of x. By ex-
panding (7), we obtain

cos $1J(8) + sin g1 J, ()
m=Jyx, = : X4,

cos ¢nJ5(0) —|— sin ¢y, Jy (0)

where, with ¢ = cosf and s = sin 6,

e —2¢2s 2es? cs
s —2¢s? —2¢2s s3
Jo(0) = cZs e(e? —s?) —s(c? —s?) —crs |
es? s(e? — 5?) e(c? —s%) —es?
c?s e(e? —s?) —s(c? —s?) —cs
es?  s(e? — &2 e(c? —s?) —es?
Jy(0) = cs? ( 262:); ( —2652) e
s3 2es? 2¢%s s

Consequently, for any given tilt estimate é, the opti-
mal estimates of the remaining four parameters are
obtained by solving the linear least squares problem

H>1<i4n (J3%4 — m)T c! (/x4 —m).



As 1s well-known, the solution to this problem can be
expressed in closed form as

%4(0) = (JFC71 I~ JF ¢ m. 9)

This means that the original five-dimensional mini-
mization problem in («, 3,7, 4, 6) has been reduced to
a one-dimensional problem in . For this problem even
a crude strategy such as linear search in the interval
(0, 7) only results in a moderate computational cost.?

5.2 Further simplifications

If the directions {¢;}7_; in which the affine distortion
is estimated can be chosen freely, the problem can be
simplified even further. In the experimental scheme
used by Malik and Rosenholtz (1994a, 1994b), the
affine distortion is estimated in n equally spaced di-
rections in the interval (0, 27), and the measurements
are assumed to be uncorrelated, i.e., C' = kI. (With-
out loss of generality, let & = 1.) Tt can then be shown
that

L 1
(JéTcljé)lzpzg

o O O
OO = O
O = OO
N O OO

This allows the optimal estimate )%4(@) = (a, 8,4, S)T
given by (9) to be expressed very concisely as

D (JxT(H) Z(ml cos ¢;) + JyT(H) Z(ml sin (/)Z)) ,

i=1 i=1

The fact that the last two rows of J, are equal to the
first two rows of J, can be used to speed up the evalua-
tion of this expression. Moreover, it can be shown that
the same result holds if the n directions are equally
spaced in the interval (0, 7) instead of in (0, 27).

If the directions ¢; cannot be chosen in this way, a
fast approximate solution can still be obtained by first
solving a linear least squares problem to fit the form
(8) to the data, and then treating the estimated matri-
ces (Mg, My) as input data to the procedure described
above. It turns out that the last column of M, is equal
to the first column of M,, which means that only six
(rather than eight) parameters are needed. However,
there is clearly no guarantee that the result obtained
by solving these two problems sequentially is close to
the optimal solution to the original problem.

2The range of ¢ is (0,27), but since J(6 + 7) = —J(8) the
value of the target function is the same for the estimates (X4, 6)
and (—X4,0 + 7). This ambiguity is resolved by requiring v =
—tano < 0.
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